Global Rayleigh wave phase velocity maps from finitefrequency tomography

Kui Liu

Yunnan University

Incorporation with Dr. Ying Zhou

Including surface phase velocity data improves the resolution in the upper mantle

Obrebski et al. ,2011

Shen et al. 2013

Data coverage of model CRUST2.0

In places with no data: using global averages

Surface wave data can also be used

- to double check the noise measurments ;
- in joint inversion with SKS splitting measurements (e.g. Yuan and Romanowicz, 2010).

Wave diffraction

Ray theory:

(1) Valid if anomaly size > wavelength

(2) Breaks down if anomaly size~ wavelength

Finite-frequency theory:

Account for diffractions by scatterers

$$\delta\phi(\omega) = \iiint_{\oplus} K_{\beta}(\omega, \mathbf{x}) \frac{\delta\beta}{\beta}(\mathbf{x}) d^{3}\mathbf{x}, \quad \text{Love waves}$$
$$\delta\phi(\omega) = \iiint_{\oplus} \left[K_{\beta}(\omega, \mathbf{x}) \frac{\delta\beta}{\beta}(\mathbf{x}) + K_{\alpha}(\omega, \mathbf{x}) \frac{\delta\alpha}{\alpha}(\mathbf{x}) \right] d^{3}\mathbf{x},$$
Rayleigh waves,

Zhou et al. ,2005

Zhou et al. ,2005

Dahlen and Zhou, 2006

Liu and Zhou 2013

kernel for interstation measurements

Liu and Zhou, 2016

Crustal effects on surface waves---*nonlinearity*

Liu and Zhou, 2013

Liu and Zhou 2013

Using SEM to simulate wave propagation

Snapshot of wave propagation

cluster

Komatitsch et al. 2008

Using SEM to simulate wave propagation

run-through mesh

exact mesh

Seismograms for two meshes

Liu and Zhou, 2013

Example seismograms in PREM and CRUST2.0

Liu and Zhou, 2013

Testing model: Crust2.0

Liu and Zhou, 2013

Model used to test finite-frequency effects

Testing model Crustal thickness: 24.4 + lateral perturbations

finite-frequency effects

kernel predictions v.s SEM measurements

Liu and Zhou, 2013

nonlinearity

Earthquakes and Stations

 30°

(b) seismic stations

~580 stations ~800 earthquakes

Model parameterization

Inverse problem

$$\delta \varphi (\omega) = \iint K(\omega, x) \ \delta \ln c (\omega, x) \ d\Omega$$

discretization and model parameterization
$$b = Ax$$

Solving inverse problem with SVD

$$\mathbf{x} = \sum_{i=1}^{M} \left(\frac{\mathbf{u}_i^T \mathbf{b}}{\lambda_i} \right) \mathbf{u}_i$$

Finite-frequency effects:

Finite-frequency effects:

Finite-frequency effects:

Phase velocity maps

Phase velocity maps

Global average

Global average in oceanic basins

(a) Ocean (60%)

100

Archean Cratons

(b) Archean (8%)

Orogenic regions

(c) Orogen (3%)

Shelf/Slope

(b) Shelf/slope (8%)

Conclusion

• We apply finite-frequency phase-velocity kernels to our global data set of Rayleigh-wave dispersion measurements and obtain global phase velocity maps;

- Our results show northwest trending small-scale structure in the Pacific;
- Our results indicate a thinner crustal or faster wave speed in the oceanic regions, consistent with CRUST1.0.

Thanks!

Effect of including major-arc

Sensitivity---total length of ray

Checkerboard resolution test

